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UNSTEADY CONVECTIVE HEAT TRANSFER IN
NATURAL COOLING OF VERTICAL PLATES

I. V. I'inskii, E. E. Prokhach; UDC 536.25
and V, P, Pershin

The results of an experimental investigation of the heat transfer of a vertical thin plate (Bi < 0.1)
in an undisturbed infinite medium are given.

Before the experiment the plate was heated to 100-200°C by a brief (0.4-1 sec) passage of electric
current. The heat transfer of the hot plate was investigated as it cooled naturally in air, water, kerosene,
and transformer oil. The temperatures of the plate and medium were measured and the optical picture
of the spectrum of convection currents was photographed, The heat transfer coefficients were determined
from the change in heat eontent of the plate, and also by the regular heat regime method on some parts of
the temperature curve.

The initial values of the Rayleigh number in the experiments in air were ~1.4-107, which corre-
sponded to an unstable region near the boundaries of thermal turbulence, The brief heating led to rapid
swelling of the boundary layer and the slow development of curling motion. We found that at a cooling rate
of about 1 deg/see the process became stabilized (quasistationary), and values of Nu were given satisfac-
torily by the known formula

1
Nu = 0.135(GrPr) ® .

This is illustrated by Fig.1. As the dimensionless time we used the product FoBi = m7, where m is the
cooling rate, and 7 is the time.

As distinct from experiments in air, the experimental data for drop-forming liquids did not corre-
spond with the relationships obtained for steady conditions. Similarity theory and physical modeling tech-
niques were used to obtain a general relationship for the heat transfer during cooling of a plate in an in-
finite medium:

—0.5 _
Nu, = 0.44 ( % ) (GrOPrg‘” )0.13_

The following ranges of numbers were used in the experiments
Gr=5.10"6 — 2.10°, Pr=0.72 —200, Fo=9.10"¢ —2.6.107%,
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where ¢ is the specific heat, v is the specific weight, 6 is the plate thickness, [ is the distance from the
end face of the plate to the point of temperature measurement,

The subscript w indicates plate parameters, f indicates parameters of the medium, and 0 the ini-
tial values of the parameters.

Dep. 739-74, January 17, 1973.
Original article submitted May 3, 1972.

EFFECT OF AERODYNAMIC CHARACTERISTICS OF AN
INSTRUMENT ON THE DRIVING FORCE OF HEAT AND
MASS TRANSFER

Yu., I. Volovik UDC 66,047.3

The processes of heat exchange and mass exchange between water and hot air in an atomizing cham-
ber are examined for the cases where the chamber represents an instrument of ideal displacement and one
of ideal mixing,

With the choice of the following variable dimensionless complexes

[S - m; A= af D K= r .
fo— 1ty Gaca cslto—1y)
o Le=Po o BFMa(P—P)(P—P) . PPy
Ps MPO ! - CaMyP 5 AV oz P — Po

we obtain the dependences @ =f(A, K) for the heat exchange and ®=f(B, N) for the mass exchange which
have identical forms, since the results obtained in an examination of heat exchange are also valid for mass
exchange with the appropriate substitution of ®, B, and Nfor @, A, and K.

Instruments for which the values of A and K are identical can be compared with respect to the com-
plex ©, called the efficiency of the instrument in the present report. In a comparison of the values of ®
for chambers of ideal displacement and of ideal mixing in the range of values 0 = A=w and 5 =K = © we
determine that the greatest absolute difference ®3-8y, is about 0.2 (see curve 2 of Fig. 1),

The graphic dependence ®4 = f{®y,), which is valid in the range of 5 =K = =, is presented in Fig. 1.
The equation 8y = @, + A®, where A® is determined from Fig.1 (curve 3), can be recommended for the
determination of ®y for industrial instruments, In this case the error in determining the instrument effi-
ciency will not exceed £13%. By expressing the instrument efficiency through the transfer potential Aty
averaged over the process we find

A8; 856, 8g i
- K/’L—
! Fig.1. Relationship between efficiencies
of instruments of ideal mixing and of ideal

g6 /
displacement: 1) ®q = f(0,); 2) @5 - O
f@L):3)ae=f (@ )forthe case where the
é

i

£ aerodynamic characteristics of the instru-

a7
/ /N ment are unknown,
‘& r-"A\

0 o7 o 2 6,

1147



NOTATION

a, heat exchange coefficient; B, mass exchange coefficient; ¥, surface of heat and mass exchange;
Gg, flow rate of air; ty, initial air temperature; ts, air temperature at exit from chamber; ty, water tem-
perature; c,, heat capacity of air; cy, heat capacity of water vapors; r, latent heat of evaporation; Pg,
partial pressure of water vapor at surface of drop; P, partial pressure of water vapor in air at exit from
chamber; Py, partial pressure of water vapor in air at entrance to chamber; P, total pressure in chamber;
M,, molecular weight of air; My, molecular weight of vapor. Subscripts: d, m, and r refer to instruments
of ideal displacement and of ideal mixing and to real instruments of intermediate type, respectively.

Dep. 759-74, November 21, 1972.
Original article submitted June 12, 1972.

AEROSOL OF VARIABLE MASS IN A VORTEX FLOW

V. A, Uspenskii, O. Kh., Vivdenko, UDC 532.529.5
V. N, Zaitsev, V., A, Sharapov,
and M. F. Shitikov

Let us write the equation of motion of a particle of variable mass, Inertial forces, centrifugal
forces, and forces of aerodynamic resistance act on the particle., The swirling of the flow is accomplished
by a vane swirler. Thus:

dav V2 1% V., _Vp)?
adip <L —my ~ ——m (k1) —Cx% ad?, (1)

< =
where m, =1/6 7d%4; m = 1/6 7d%p; d = dy t/7; 0 is the coefficient of slip of the particle relative to the
tangential velocity of the flow; k = 12; d, is the particle diameter; T is a proportionality constant; p is the
mass density of the gas, p, is the mass density of the aerosol; r is the radial coordinate directed from the
axis of rotation of the flow toward the periphery of the apparatus of radius R; t is the time; VR is the
radial component of the velocity of the gas flow; V is the tangential component of the gas flow; Cyx is the
coefficient of frontal resistance; Vy is the unknown velocity of the particle under consideration, The solu-
tion of Eq. (1) has the form

Y
4 (I—T) pado

Vilt) = —3C_:)tl {[CIp (Bt ) + ColNp B +(v—1) ﬁtv[crlp-l (Bf¥) - GV poy (B, (2)

where Cy =a/b—a, Cy=1/b—a, a =—Np+Np_1+Np_p/—Jp+d_1+Ip_s b = (Np — Np-y)or, and Jp, and Ny
are Bessel and Neumann functions, respectively;

/ 3C, [e— £ (k-i—l)] Vipti
B Oy .
]/ dopgy (1~ |
AN pa 7/

3Cy [e——"— (k+1)J Voot
S N Pa .
[ S 2 * - ’ p ’
dop,r |1 ——
Oa{\ a)
3
p = Ll [I— A—--——AZ],
2 1
(1__3_)
Py
_ Gir1p _ 3 (»L A—l)
doPa ' 2(1__..2_> 4 ’
Oa

1148



H is the pressure drop at the blade swirler and 8, is the mounting angle of the swirler blades. Vg and V
are determined quantitatively by a method presented in JEP, 18, No.3 (1970).

With d = const

,
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Equations (2) and (3) were confirmed experimentally on a vortex dust-collecting apparatus (R = 100 mm;
dy =53 By =20% H = 210 mm water column; k =11,5; § = 0.85; ¢ = 0.91; Cx = 30-14; 7 = 0.04-0.086).

Equations (2) and (3) can be used in constructing a method of calculating vortex instruments,

Dep. 758-74, November 21, 1972.
Original article submitted June 14, 1972

STUDY OF THE POSSIBILITY OF USING EMPIRICAL
FUNCTIONS OF THE COEFFICIENT OF RESISTANCE
FOR THE CALCULATION OF CURVILINEAR
DUST-LADEN FLOWS

V. D, Lebedev, S. G. Ushakov, UDC 532.529.5
and V. E. Maslov

In the study of the working processes in various instruments which have a two-phase flow (gas-
dust, gas-liquid drops) a calculated determination is very often made of the particle trajectories and
velocities. In this case the differential equations of motion involve the coefficient of frontal resistance
C which is a function of the Reynolds number of the particle (the dimensionless velocity of its blowing):
Re =udp/n (6 and u are the diameter and relative velocity of the particle; py and 7 are the density and
dynamic viscosity of the carrying medium).

Since the function C{Re) has a very complicated nature and it is difficult to approximate it accurate-
ly enough in a wide range of Re a great many interpolation equations C =f(Re) have been proposed which
permit one to calculate C in a given range of variation of Re with one or another accuracy. When using an
electronic computer for the calculation it is most advisable to determine C from a table of C = f (Re) com-~
piled on the basis of the most reliable experimental data generalizing the studies of many authors. How-
ever, the use of various empirical equations for C continues in the earlier works of many authors at
present, and therefore it is advisable to estimate the error produced by them, particularly in light of the
fact that the error in the determination of C can itself give little indication of the size of the error in the
determination of the trajectory since other factors besides the force of resistance have a large effect,

Calculations are made of the trajectories of particles 16,5427 p in diameter in a curvilinear annu-
lar air flow 1000 mm in diameter with a determination of the relative separation angle (the angular path
up to contact with the outer wall). Trajectories obtained using an experimental function C{Re) are taken
as the standard. Fourteen interpolation equations of different authors are tested and the relative error A
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in the determination of the separation angle is found for each one, In this case the air speed and the initial
velocity of insertion of the particles into the channel were varied. The principal results of the study are:

1. The use of a majority of the more complicated many-termed functions C(Re) leads to an error
A=7%.

2. The use of simple functions of the type C = 0.4, C = 10/VRe, etc. gives an error of 40-75%.

3. The most4 successful interpolation equations are the following: C = 24/Re +4¥Re, 24/Re +3.6/
Re®313 24/Re +2.8/YRe, which lead to errors not exceeding 5-7% in the ranges of the variables studied.

Dep. 760-74, March 9, 1973
V. I. Lenin Ivanovo Power Institute
Original article submitted June 22, 1972

CONCENTRATION OF SUSPENDED PARTICLES
OF VARIABLE MASS IN A TURBULENT FLOW
B. P. Kazakov, A, E, Krasnoshtein, UDC 532.529.5

and T. A, Samarina

The problem of the concentration of a hygroscopic aerosol in a confined turbulent air flow behind
a source of constant intensity reduces to the solution of the turbulent diffusion equation

du,C | ouC D a9°C (1)
ax ' 9z " oz
with boundary conditions
ac
D —u,Cl =0,
T 0z 1z z=1
Clz:O:O’
where
uy = const, u,= ak®. 2)

The change in the radius of hygroscopic particles is due to growth by consideration and coagulation

JOR A

‘ = -+ BR, 3
0z aRs BR ©)
where
3
4o DRAPRE o 17w
oRT %
DotV
Determining R from Eq. (3) we obtain
: 74 ) R
ol (L srsnfoaff

The solution of Eq. (1), taken in conjunction with (2) and (4), will be sought in the form
C(x, 2)=X(x)Z (2).

Then, using the Ritz method, we obtain a first approximation to the mean cross-sectional concen-
tration of the aerosol
A
Cip = Xp (—.?e— ) (5)

The eigenvalue A depends on the initial parameters of the hygroscopic aerosol and the air flow.
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The obtained solution (5) was tested in the conditions of the potash mines of the "Beloruskalii”
combine. A comparison of experimental measurements of the particle concentration with the results of
calculation showed good agreement,

The obtained solution provides a basis for the selection of the climatic parameters of air flows
which will ensure minimum dust pollution of the atmosphere in potash and salt mines,
NOTATION
D, tarbulent diffusion coefficient; ug, averaged flow velocity; uy, particle settling velocity; Ry,

initial particle radius; p, py, density of particles and air, respectively,

Dep. 799-74, November 27, 1973.
Original article submitted September 7, 1972.

MODEL EQUATIONS OF THE KINETICS OF DESORPTION

L. K., Tsabek A UDC 541,183

The equilibrium kinetics of desorption in porous symmetrical grains is described by a quasilinear
parabolic material balance equation and the equation of an isotherm on the phase boundary

d(c-+q) ¥ v de )
B B = . 1
gy ST T 91 1)

An accurate numerical solution of the partial-differential equation (1) leads to an accurate ordinary diffeér-
ential equation which describes the kinetics of desorption in the outer diffusion region

— i
& - _ —
% =yl fe—elpl, o tezfy, g== {1 -Fv) g g(cyrVdr. (2)
¢

The kinetics of desorption in a mixed region {outer and inner diffusion) is described by the equation

9 { LN {3)
o vl ve j e—oi-
We find the analytic relation w(qg) in the form
@ (;) = [bo -+ b). (‘T“ Gn) - bz (‘7"’ 60)= -+ bs (‘7‘“ 60)31= (4>

(25— q -+ 80)*

The value of 6, is chosen from the conditions of max w and g, = max q. For practical calculations of the
kinetics of desorption with g, =1, max w = 2.5, the Langmuir isotherm is ¢ = (1 + p)e/{1 + pe), Figure 1

8 H % ~ ~
d I ~ -
b e
| / 3, |
/ . x.__.Ai.-—-----'-"-"""““"“"'—'__“x

4 Fig.1. Values of the coefficients by
e = . R i
_qs }, 4 (notation asin Fig.2).
' .
/A \. /./
{ ~\\ At

1151



w(§) }
s — ¢
x —2
VA S ]
o — §
8 — §
t4
Fig.2. w(@: 1) p =0; 2) 1; 3)
" V7 45 4) 10; 5) 24; 6) 49.
7
,ea_,/;;’
%5 04 % g

gives the values of the coefficients bj for various values of p, and Figure 2 shows graphs of the functions
w{q). Using the values of bj or w(qg), the kinetic desorption curves in the inner and mixed regions can be
calculated from Egs, (2) and (3) for arbitrary parameters p.

Dep. 737-74, November 21, 1972
Original article submitted August 2, 1972.

ON A HEAT-TRANSFER PROBLEM

M., P. Lenyuk UDC 517,944(07)

Two one-sided bounded bodies with different physical parameters and initial data characterizing
their initial state (initial temperature distributions) are brought into contact,

Taking account of the finite rate of propagation of heat, the problem of determining the temperature
distributions at any instant in the contacting bodies and the heat flux at their boundary is formulated mathe-
matically as follows: it is required to find the bounded solution of the equations [1, 2]

3 du 2
2 1 2 1 2 1 . -
B —n— o e = h 9 0T, 00 Tee), b
du, . v O ) (2)
9 Ut g s 2 . ET, " X
b? ofe + Cg 5t g ax? = f‘l (t’ x) (O\(\\t\: T! oo “»-\\0)’
which satisfies the conditions
v - I N
Wims G, 3] =00 >0, 3)
, . dug | ; .
gy = G2 (), 0| =l () (O, (4)
Uy (20, 4y o iy (0, B, Ay —) L Oty (5)

% fx=0 T 0x o

By introducing Cauchy and Green's functions and the fundamental function of the problem posed
above, formulas are obtained describing the required quantities and making it possible to obtain solutions
for a broad class of initial data. In the limit as b; — 0, by — 0 the temperature distributions are obtained
if the rate of propagation of heat is infinitely large in the media x =0 or x = 0 or both simultaneously.

If the rate of propagation of heat in both bodies is infinitely large and there are no heat sources, we
have Tsoi's results [1].
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METHOD OF CALCULATING THERMODYNAMIC
PROPERTIES OF n-ALKANES FROM ULTRASONIC
MEASUREMENTS AT PRESSURES UP TO 2000 ATM

B. 8., Kir'yakov, N, F. Otpushchennikov, UDC 536,7
and P, P. Panin

The calculation of the thermodynamic properties of liquids from the results of measurements of
sound velocity in relation to pressure and density can be based on the well-known expression for sound
veloeity, rewritten in the form

o]
v= L0 AT (1)
3(\ dp Jr

The literature contains the following empirical relations for the determination of the derivatives
in expression (1) for a relatively narrow range of pressures:

03 = C3 + K (P—Py), 2)
C=Co-+B (p—po)s (3)
where C, and p, are the sound velocity and density at atmospheric pressure,

As follows from (1), relationships (2) and (3) presume that v is independent of pressure on the

isotherms:
K
T (4)

Sound velocity measurements made by the authors for several n-paraffins in the pressure range
0-2000 atm and temperature range 30-120°C indicated that the experimental data deviated from relation-
ships of the form (2) and (3). This indicates that calculation from (2) and (3) should be regarded as cal-
culation based on the mean value of y for the pressure range in which the results of measurements are

being processed.

The authors propose the following expressions for the derivatives in (1):

C= ‘3' CotZ P Ry (P=Pyy — 2,1 (5
O=py+ .__3__ [(C Cp)—2 @, -~ Z,) in C—-Z, 7 ( i i
il e Tl el Lp) ) —{Z, 702 L
Ko ° ! : Co—Z, 2+ c—-2, Co—2Z,y }} ’ {6)

where K, is a constant for the whole series of n-paraffins; Z; and Z, are constants for a particular iso-
therm and characterize the shift along the velocity axis on superposition of the isotherms on the C-P and
C-p axes,

Expressions (5) and (6) presume that v decreases with pressure

[or

(C—Zop @

V=
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Relationship (5) was obtained by applying similarity theory to the treatment of the experimental
data for the sound velocity in the series of n-paraffins in relation to pressure. Expression (6) was ob-
tained from (1) and (5) on the basic assumption that

lim y=1.
p—»m

The authors compared the calculated values of p and vy with available published data for the case
of n-heptane. The comparison showed that the assumption of y tending to 1 with increase in pressure
leads to fairly good agreement between the results of acoustic and PVT measurements,

Dep. 800-74, November 26, 1973.
Kursk State Pedagogic Institute
Original article submitted June 17, 1972

THE ZERO STATIC-PRESSURE LEVEL IN
CYCLONE CHAMBERS

A, N. Shtym and A, 8. Latkin UDC 533.601.1

The position of the zero excess-pressure level is important in calculating the pressure distribu-
tion in a spiral flow and also in determining the hydraulic resistance of a cyclone device. It is shown
that experiment does not confirm the assumption that the zero level coincides with the radius 7 =1, where
the tangential velocity component is largest, A qualitative analogy exists between the pressure and tangen-
tial-velocity distributions in a circular eddy and in a real cyclone flow, and it is therefore possible to find
the zero-pressure level oD =, from the zero value for the second derivative of the pressure with respect
to radius,

An approximation is used for the tangential velocity with this condition to get relationships for the
dimensionless pressure:

oo

AP— l_AP -:4n2(__1)m+r (n—m)! o G, »
. 2 tin=m)(l +1?
Tp“v(pmax m=0 mt (n = m) (1 + 1) i
2n— 1
Mo ™V Tyt

()

We see from (2) that the radius NAD =0 Canvary from 1 (for n = «) to zero (for n = 0.5) in relation
to the flow generation conditions, which are characterized by n,

Experimental results are given on the zero-pressure level in cyclones with narrowing factors at
the outlet from 0.05 to 1; calculations from: (1) and (2) are used with experimental data to show that the
pressure reduction at the axis increases as the relative narrowing is reduced, reaching a maximum and
then decreasing rapidly, while npop =, moves towards the flow axis until the zone of reduced pressure
vanishes completely.

Dep. 798-74, November 26, 1973.
Original article submitted June 26, 1972.
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DETERMINATION OF THE FIRST ROOT OF THE
CHARACTERISTIC EQUATIONS IN THE ANALYTICAL
THEORY OF THERMAL CONDUCTIVITY

A, A, Shmukin UDC 536.21

The characteristic equations of the analytical theory of thermal conduction are put as the series

FaO= ¢t go =0, (1)

ri=0

where the series of coefficients {¢y} takes a particular form for each detailed problem; to determine the
square of the root least in modulus for (1) one has the formula

p? = lim . (2)
f1—>00 QI!:—]_
where Qy is given by the recurrence relation
o 1
ey ~ T
Fo
n
9,=— %o . © (3)
.‘w n—s

Fo

and these are the coefficients to u?® in the expansion of 1/f(u) as a power series in degrees of pZ,

Equation (2) gives uf for n — e, but analysis indicates that the convergence to the exact value of
pf is rapid, so (2) can be put as

o 2
Wy n=

where m is a finite number, to find u% with any preset accuracy & when
2 2 . P
35‘!,”1_'-“1,111—1“?/:8’ (3)

and secondly one can obtain simple formulas to give u% approximately, i.e.,

Q
0 ©a
Uy x —— == —, 6
! 1 P (6)
I SO 1Y 5! 0
H Q, Fobe— G
5 Q Fo ((f? = 2!
s o= - . , (8)
3 Do (P2Fy — GsFo) — G1 (] ~— P2Py)

As (6)-(8) contain the coefficients ¢ representing the form of the characteristic equations as
parameters, we clearly have (6)-(8) as universal; it is also found that (7) and (8) are highly accurate.

The algorithm of (4) and (5) goes with formulas (7) and (8) in illustrations for detailed characteris-
tic equations from the theory of thermal conduction and mathematical physics.

Dep. 808-74, August 12, 1972.

Dnepropetrovsk Section, Institute of Mechanics, Academy of Sciences of
the Ukrainian SSR, Dnepropetrovsk.«

Original article submitted May 23, 1972,
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SOLUTION OF A MIXED BOUNDARY-VALUE PROBLEM
FOR THERMAL CONDUCTION IN A CYLINDRICAL
REGION WITH AN INCLUSION

G. A. Zhil'kov UDC 536.2.01

A particular solution is given for steady-state heat conduction in a cylinder of height 6,+6, and
radius R containing an inclusion of another material of height §, and radius ry. A constant temperature
is maintained at the boundary z' = —8,;, while at the boundary z' =, there is heat transfer with a medium
of constant temperature, and at boundary r' =R there is thermal insulation.

An additional boundary condition is introduced following from simulation of the temperature distri-
bution with the MSM-1 analog system. It is assumed that the temperature distribution over the cylindrical
surface r' =r; in the main material can be considered as linear with a coefficient of proportionality by,
while along the boundary of the two materials it is the same with a coefficient of proportionality b,.

The problem is handled by dividing the body into four regions D; (0 =r =1, 0=z=1), Dy(1=r
=m, 0=z=1),D;0=r=1 —p=z=0), Dy(l=r=m, —p=z =0)and solving for each region
separately; as the boundary condition at z = 0 is not given for each region, the solutions contain constants
of integration, which are found from the conditions for ideal thermal contact at z = 0.

The solutions are found by applying an integral Hankel transformation for the regions D; and Dy of
the form

i
Hi(Ti(r, D=\ tdo () Ti r, Ddr (=1, 3), 1)
. o
where v are the positive roots of Jy(v) = 0, while the relation for the regions D, and D, is of the form

HiTir, Dl = [ B ) Ti(r, 2 dr (=2, 9, 2)
i

where
By (r) = Jo () N () — No (1) Jo (1),
and p are the positive roots of
Iy (wm) No (k)= Ny (um) Jo (w) = 0.
The inverse transformations take the form
T (r, z):QE%Hi (=1, 3), @)

n=1

2 XY B2 IE (wam) By (ar)
2 TR (00) — T3 ()

n==1

Ti(r, 2) =- H; (=2, 4).

(4)

The coefficients of proportionality ¢; and c, are found from the conditions for the mean heat fluxes through
the surface r =1 to be equal:

S 0

\ (ﬂ dz= 5(ﬂ) dz, (5)
JNOr Je=1 or Jr=1
= ] ~p

: 0T\ : ATy

-1 dz—=Fk (—2) dz.

3 (ar ,)r:x J\or Jr=t ©
0

Formulas are derived for temperature and heat flux; a cylindrical inclusion is also envisaged.
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NOTATION

t, temperature of inclusion or main material; te, environmental temperature; t, temperature at
heated surface; T = (t—tg)/(th —te), dimensionless temperature; A(A;}, thermal conductivity of inclusion
(main material); r =r'/ry, z =2z'/0,, dimensionless coordinates; k =Xy Ay, p =84/8,5, m =R/ry, ¢f =bydity
/E—te)s ©y =Dbydoth/(th — te), dimensionless quantities, J, and J; Bessel functions, and Nj and N; Neuman
functions,

Dep. 810-74, November 26, 1973.
All-Union Teploproekt Research and Design Institute, Moscow.
Original article submitted February 9, 1973.

TRENDS IN CONSTANT-TEMPERATURE
LINE MOTION IN SOLIDS

N, M. Tsirel'man UDC 536,21

Nonstationary thermal conduction is considered as serial displacements of the isotherms ® =idem;
this naturally introduces the paths traversed by the fronts @ = idem and the velocities Vs the analysis
shows that the speed of ® = idem in a half-space with Bi == is

{ 9 ) M’ @ (8) - reciprocal erfe, 1)

)
6= at x

i.e., is dependent on the path traveled x and on ®; the shape of the ® = idem curves in x and 7 coordinates
corresponds to the upper branch of a quadratic parabola,

On the other hand, for bounded bodies in the regular thermal state we get the dimensionless velogi-
ty ¥g = [0(1—n)/0 Folg for a plate, cylinder, and sphere, respectively, for boundary conditions of the first .
and third kinds as

2
4o (1) B
e 2R 1o L t
— —p, ety
n By CI8 gy

, (2)

where yy = py (Bi), and n =X/ls'

Then the regular condition is represented by an unaltered velocity Vg specific for each point, which
is independent of ®, Minsk-22 calculations show that this corresponds to equidistant parts of the curves
for the various fronts ® = idem in {1~ 17) ~Fo coordinates (Fig.1). The speed Vg in a plate, cylinder, or
sphere may be taken asg in the ratio 1:2:3 for the points 7 = idem.,

In the guasistationary state with boundary conditions of a second kind we have

3 {{y — x} i .- AL ) m
Pe = | | o A0d Uy a | . 3
© { ot }e x % T gFo g 7 @)

where m = 1, 2, and 3 for plate, cylinder, and sphere respectively; here again the velocity vaVe) is un-
varying at each point in the body.

|
/
//(// / / 7
fi’f 7 w Fig.1. Course of fronts @ = idem in
] an unbounded plate for Bi ==,
/ 5
|
2 gz % 9 Fo
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This relationship applies for bounded bodies when there are continuous uniformly distributed heat
sources and symmetrically disposed instantaneous source; the Vg are determined by (2) and are not de-
pendent on the outputs of the heat sources nor on the disposition of the instantaneous source in the body.

This provides a general feature for regularization in the thermal kinetics: the \'r® for the isotherms
in a bounded body are unaltered at each point in the regular and quasistationary states and are dependent
only on the coordinates of the point and the nature of the boundary conditions,

The initial stage preceding the regular one may be examined by comparing the behavior of the
fronts ® = idem in bounded bodies and in a half-space; in comparison with the latter, the standard solu-
tions for the temperature distribution for Bi =« must be interpreted in the form of the course of @ =idem
in (1 —n) —vFo coordinates, while for Bi =« one must take the Bi (1— %) — Biv Fo coordinates, Calcula-
tions show that the initial parts of the lines @ = idem for the plate up to the regular step correspond to the
thermal laws for the half-space with identical boundary conditions, The trend is also derived for a cylin-
der and sphere as the fronts ® = idem recede from the outer surface, where deviations occur on account
of geometrical changes in the fronts,

In any case one can say that the peripheral layers of a bounded body are subject to the thermal
laws applicable to a half-space, while the central layers are involved in the steady-state stage, and are
characterized by unvarying local speed in the isotherm motion, Meanwhile, the geometrical region to
which this law applies expands,

Dep. 801-74, November 26, 1973.
Original article submitted April 4, 1972.

REGULARIZATION OF THE THERMAL CONDITIONS
IN THE CENTER OF A BOUNDED BODY

N. M., Tsirel'man UDC 536.21

It has previously been shown that the speeds vg = [8¢ —X)/97]g of the isotherms @ = idem in the
regular state are as follows for a plate, cylinder, and sphere subject to boundary conditions of the first
and third kinds:

2

a a To (1) a H .
Pl U8 UL Fenl Y T T
Ty ' fa b Silem T metg (1)
Computer calculations (Fig, 1) show that the conditions ¢ = idem, ;=

idem, Bi = idem, 1= %/1; = idem cause the v@ to be in the ratio 1:2:3
in these bodies, i.e,, 28 the ratio of the volumes of the bodies to the areas
of the bounding surfaces.

20
\ If pyn is small, it is shown analytically that the velocity vg=ve
\ Iy/a is independent of the thermal setting at the outer boundary of the
\ body, since in that case we have

o, 1t
vo =" 2)

0

where m = 1, 2, 3 for plate, cylinder, and sphere, respectively.

Formula (2) applies for any Bi in the central parts of a body 0=
< 0,25, and to the whole of the body for Bi = 0.1,

2 o » X, It is shown that (2) allows one to determine the thermal diffusivity

) - a without reference to the thermal conditions at the outer boundary,
Fig.1. Relation of ¥ to 1 for

an unbounded plate (a, Bi ==, If there is a simple exponential relationship between @ and Fo, (2)
b, Bi = 0.01) and sphere (c, Bi indicates an elliptical temperature distribution for the temperature
=3 d, Bi =0.01). which for a given Fo takes the form
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Q@ == consty, (g, o) ! T— Sl {3

Then the elliptical distribution of ® in 7 applies for any Bi in the thermal condition for the central part
of the body 0 =7 < 0.25, while it applies to the whole body for Bi =0,1,

Dep. 803-74, November 26, 1973.
Ordzhonikidze Ufar Aviation Institute.
Original article submitted June 10, 1972.

HEAT TRANSFER IN A SYSTEM OF TWO
SEMI-INFINITF BODIES SEPARATED BY
AN INTERLAYER

E. M. Makushok, A, N, Ravin, UDC 821.73.043
V. P. Severdenko and £. Sh. Sukhodrev

The actual heat transfer between two solids often occurs via a layer whose properties substan-
tially influence the temperature distribution and heat fluxes,

For instance, the heat transfer between tool and workpiece in hot pressure working of metals
commonly occurs through 2 layer of scale, with lubrication by gas and other inclusions [1].

Standard solutions [2, 3] provide the current parameters of this layer on the hot and cold sides, and
then the solution for a semi-infinite body with boundary conditions of the first kind [4] is used to find the
temperature distributions in the bodies, The heat transfer in a system of two massive bodies indicates that
the solutions of [2, 3], which were derived on the assumption of zero specific heat in the layer, are inap-
plicable for brief contact and when the layer is of considerable thickness, In that case, the heat transfer
is substantially affected by the layer heat capacity, and under certain conditions the third body may be com-
pletely insulated if the contact time 7 and the layer thickness 6 are appropriate. The solution for ideal
contact between two semi-infinite bodies [4] implies that to within about 2.5% The third body is thermally

insulated for Fo =a7/62 = 0.1 {¢ is the thermal diffusivity of the layer); the third body is involved in the
heat transfer if Fo > 0.1,

To determine the temperature distribution in each of the three bodies as a function of time, a study
has been made of the triple heat transfer using a model of two massive bodies separated by a layer,

The dimensionless temperatures of the contact surfaces have been calculated for set values of Fo,
using similarity theory, and graphs have been constructed for the variations in the temperature, which
are given by analytical expressions for the temperature distribution in each body and the heat loss in the
layer in relation to the thermophysical and geometric parameters of the latter. The solutions are suitable
in particular for calculating thermal processes in pressure working of metals,
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